信道编码(Channel Coding):目的是寻找在实际上易于实现且能达到有效而可靠通信的编译码方法。
差错图样(Error Pattern),定量的描述信号的差错,收发码之“差”:差错图样E=发码C-收码R (模M)
差错Baidu Baike
- 随机差错
- 突发差错
信道编码的分类
1、从功能角度分:
- 检错码
- 纠错码
2、从对信息序列的处理方法分类:
- 分组码
- 卷积码
3、码元与原始信息位的关系:
- 线性码 (线性分组码:信息码元与监督码元之间呈线性关系的分组码)
- 非线性码
4、差错类型:
- 纠随机差错码
- 纠突发差错码
- 纠随机/突发差错码
*差错系统的分类
- 前向纠错(Forward Error Correction,FEC)
- 反馈重发(Automatic Repeat Request,ARQ)
- 混合纠错(Hybrid Error Correction,HEC)
差错控制系统的优缺点:
……
纠错编码的基本思路,纠错能力的获取:
- 利用冗余度:信息流中插入冗余比特,其与信息比特之间存在特定相关度
- 噪声均匀化:差错随机化,将集中的噪声干扰分摊开来
①增加码长
②卷积
③交错/交织
译码
译码算法的已知条件:
- 实际接收到的码字序列
- 发端所采用的编码算法和该算法产生的码集
- 信道模型及信道参数
信道的研究方法:由于干扰的影响,输入与输出之间没有固定的函数关系,只有统计依赖关系。形象地将信道问题归结为输入、输出和转移概率矩阵三个要素来描述。
信道编码定理:
若有一离散无记忆平稳信道,其容量为C,输入码序列长度为n,只要待传送的信息率R<C,总可以找到一种编码,当n足够长时,译码差错概率Pe<ε,ε为任意大于零的正数。反之,当R>C时,任何编码的Pe必大于零,当n→∞,Pe→1。
同无失真信源编码定理类似,信道编码定理也是一个理想编码的存在定理;只说明存在一种编码方式,但它没有告诉我们如何构造实际上可实现的、具有上述性能的编码方法。
(在相同有效速率的情况下,如果一种信道编码所需要的信噪比越低,则越接近香农定理指定的信噪比,编码性能越好。)