信息论与编码_信道编码

信道编码(Channel Coding):目的是寻找在实际上易于实现且能达到有效可靠通信的编译码方法。
差错图样(Error Pattern),定量的描述信号的差错,收发码之“差”:差错图样E=发码C-收码R (模M)
差错Baidu Baike

  • 随机差错
  • 突发差错

信道编码的分类
1、从功能角度分:

  • 检错码
  • 纠错码

2、从对信息序列的处理方法分类:

  • 分组码
  • 卷积码

3、码元与原始信息位的关系:

  • 线性码 (线性分组码:信息码元与监督码元之间呈线性关系的分组码)
  • 非线性码

4、差错类型:

  • 纠随机差错码
  • 纠突发差错码
  • 纠随机/突发差错码

*差错系统的分类

  • 前向纠错(Forward Error Correction,FEC)
  • 反馈重发(Automatic Repeat Request,ARQ)
  • 混合纠错(Hybrid Error Correction,HEC)

差错控制系统的优缺点:
……
纠错编码的基本思路,纠错能力的获取:

  1. 利用冗余度:信息流中插入冗余比特,其与信息比特之间存在特定相关度
  2. 噪声均匀化:差错随机化,将集中的噪声干扰分摊开来
    ①增加码长
    ②卷积
    ③交错/交织

译码
译码算法的已知条件:

  • 实际接收到的码字序列
  • 发端所采用的编码算法和该算法产生的码集
  • 信道模型及信道参数

信道的研究方法:由于干扰的影响,输入与输出之间没有固定的函数关系,只有统计依赖关系。形象地将信道问题归结为输入、输出和转移概率矩阵三个要素来描述。

信道编码定理:
若有一离散无记忆平稳信道,其容量为C,输入码序列长度为n,只要待传送的信息率R<C,总可以找到一种编码,当n足够长时,译码差错概率Pe<ε,ε为任意大于零的正数。反之,当R>C时,任何编码的Pe必大于零,当n→∞,Pe→1。

同无失真信源编码定理类似,信道编码定理也是一个理想编码的存在定理;只说明存在一种编码方式,但它没有告诉我们如何构造实际上可实现的、具有上述性能的编码方法。

(在相同有效速率的情况下,如果一种信道编码所需要的信噪比越低,则越接近香农定理指定的信噪比,编码性能越好。)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallC1oud

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值